lunes, 29 de noviembre de 2010

Cosmología

La cosmología es la ciencia que estudia el universo. Trata de colocar juntas todas las piezas del gran rompecabezas que constituye el estudio del universo y concebir un todo coherente y armonioso.
Platon, distinnguiendolo del Caos que sus antecesores habían imaginado, definió el universo como un sistema bello y armonioso tanto en su constitucion como en su funcionamiento.
El discipulo más prominente de Platon, Aristóteles, fue el encargado de instaurar un modelo del cosnmos tan real y coherente que perduró como la imágen oficial que aceptaron filósofosdurante los siguientes dos mil años.
Pero la cosmología es más que esto. Es la historia de la humandad en busca de sus orígenes. es el intento más que milenario de comprender las fuerzas naturales que rigen el cosmos, apartandose de aquellos pensamientos mágicos y fraudulentos que llevan por caminos truncos.

Universo en Expansion

La expansión métrica del espacio es una pieza clave de la ciencia actual para comprender el Universo, a través del cual el propio espacio-tiempo es descrito por una métrica que cambia con el tiempo de tal manera que las dimensiones espaciales parecen crecer o extenderse según el Universo se hace más viejo. Explica cómo se expande el Universo en el modelo del Big Bang, una característica de nuestro Universo soportada por todos los experimentos cosmológicos, cálculos astrofísicos y medidas hasta la fecha. La métrica que describe formalmente la expansión en el modelo estándar de Big Bang se conoce como Métrica de Friedman-Lemaître-Robertson-Walker.

La expansión del espacio es conceptualmente diferente de otros tipos de expansiones y explosiones que son vistas en la Naturaleza. Nuestra comprensión del "tejido del Universo" (el espacio-tiempo) implica que el espacio, el tiempo y la distancia no son absolutos, sino que se obtienen a partir de una métrica que puede cambiar. En la métrica de expansión del espacio, más que objetos en un espacio fijo alejándose hacia el vacío, es el espacio que contiene los objetos el que está cambiando propiamente dicho. Es como si los objetos no se mueven por sí mismos, el espacio está "creciendo" de alguna manera entre ellos.

Debido a que es la métrica que define la distancia que está cambiando más que los objetos moviéndose en el espacio, esta expansión (y el movimiento resultante son objetos alejándose) no está acotado por la velocidad de la luz que resulta de la relatividad especial.

La teoría y las observaciones sugieren que muy al principio de la historia del Universo, hubo una fase "inflacionaria" donde esta métrica cambió muy rápidamente y que la dependencia del tiempo restante de esta métrica es que observamos la así llamada expansión de Hubble, el alejamiento de todos los objetos gravitacionalmente acotados en el Universo. El Universo en expansión es por tanto una característica fundamental del Universo en el que habitamos, un Universo fundamentalmente diferente del Universo estático que Albert Einstein consideró al principio cuando desarrolló su teoría gravitacional.

El modelo de las hormigas en un balón es una analogía bidimensional para la métrica de expansión tridimensional. Una hormiga se imagina que está restringida a moverse en la superficie de un balón que para la comprensión de la hormiga es la extensión total del espacio (ver el artículo en Flatlandia para más consecuencias de una restricción bidimensional). En una de las primeras etapas del Universo-balón, la hormiga mediría distancias entre puntos separados del balón que sirven como un estándar con el que se puede medir el factor de escala. El balón se infla un poco más y entonces la distancia entre los mismos puntos es medida y determinada por un factor proporcional. La superficie del balón sigue pareciendo plana y aún así todos los puntos han retrocedido desde la hormiga, a su vez cada punto en la superficie del balón está proporcionalmente más lejos de la hormiga que antes de que el Universo-balón se inflara. Esto explica cómo un Universo en expansión puede resultar que todos los puntos retrocedan entre sí simultáneamente.

En el límite en que la hormiga es pequeña y el balón es enorme, la hormiga también puede detectar cualquier curvatura asociada con la geometría de la superficie (que es aproximadamente una geometría elíptica para la superficie exterior de un balón curvado). Para la hormiga, el balón parece ser un plano que se extiende hacia afuera en todas direcciones. Esto imita el llamado "problema de la planitud" visto en nuestro propio Universo observable que parece incluso en las escalas más grandes seguir las leyes geométricas asociadas con la geometría plana. Como las hormigas en un enorme balón, mientras que podamos detectar la curvatura, en mayores, escalas observables sería una curvatura residual. La forma del universo que observamos se considera que es plana, cosa que no pasa con las condiciones iniciales que el Universo tuvo en la inflación cósmica que causó que el Universo se empezara a expandir en primer lugar.

En la analogía, las dos dimensiones del balón no se expanden en cualquier cosa ya que la superficie del balón admite infinitos caminos en todas direcciones en todo momento. Hay alguna posibilidad de confusión es esta analogía ya que el balón puede ser visto por un observador externo que vería la tercera dimensión de expansión (en la dirección radial), pero esto no es una característica de la expansión métrica, más que el resultado de la elección arbitraria del balón que ocurre que está en una variedad embebida en una tercera dimensión. Esta tercera dimensión no es matemáticamente necesaria para que ocurra la métrica de expansión bidimensional y la hormiga que está confinada en la superficie del balón no tiene forma de determinar si una tercera dimensión existe o no. Puede ser útil visualizar una tercera dimensión, pero el hecho es que la expansión no requiere teóricamente que tal dimensión exista. Este es el porqué de que la pregunta "¿en qué se está expandiendo el Universo?" está pobremente formulada. La métrica de expansión no tiene que avanzar "hacia" nada. El Universo que habitamos se expande y las distancias se harán mayores, pero eso no significa que hay un mayor espacio en el que se está expandiendo.

Big Bang

Curiosamente, la expresión Big Bang proviene -a su pesar- del astrofísico inglés Fred Hoyle, uno de los detractores de esta teoría y, a su vez, uno de los principales defensores de la teoría del estado estacionario, quien en 1949, durante una intervención en la BBC dijo, para mofarse, que el modelo descrito era sólo un big bang (gran explosión). No obstante, hay que tener en cuenta que en el inicio del Universo ni hubo explosión ni fue grande, pues en rigor surgió de una «singularidad» infinitamente pequeña, seguida de la expansión del propio espacio.[1]

La idea central del Big Bang es que la teoría de la relatividad general puede combinarse con las observaciones de isotropía y homogeneidad a gran escala de la distribución de galaxias y los cambios de posición entre ellas, permitiendo extrapolar las condiciones del Universo antes o después en el tiempo.

Una consecuencia de todos los modelos de Big Bang es que, en el pasado, el Universo tenía una temperatura más alta y mayor densidad y, por tanto, las condiciones del Universo actual son muy diferentes de las condiciones del Universo pasado. A partir de este modelo, George Gamow en 1948 pudo predecir que debería de haber evidencias de un fenómeno que más tarde sería bautizado como radiación de fondo de microondas

Para llegar al modelo del Big Bang, muchos científicos, con diversos estudios, han ido construyendo el camino que lleva a la génesis de esta explicación. Los trabajos de Alexander Friedman, del año 1922, y de Georges Lemaître, de 1927, utilizaron la teoría de la relatividad para demostrar que el universo estaba en movimiento constante. Poco después, en 1929, el astrónomo estadounidense Edwin Hubble (1889-1953) descubrió galaxias más allá de la Vía Láctea que se alejaban de nosotros, como si el Universo se expandiera constantemente. En 1948, el físico ruso nacionalizado estadounidense, George Gamow (1904-1968), planteó que el universo se creó a partir de una gran explosión (Big Bang). Recientemente, ingenios espaciales puestos en órbita (COBE) han conseguido "oír" los vestigios de esta gigantesca explosión primigenia.

Dependiendo de la cantidad de materia en el Universo, éste puede expandirse indefinidamente o frenar su expansión lentamente, hasta producirse una contracción universal. El fin de esa contracción se conoce con un término contrario al Big Bang: el Big Crunch o Gran Colapso. Si el Universo se encuentra en un punto crítico, puede mantenerse estable ad eternum.

La teoría del Big Bang se desarrolló a partir de observaciones y avances teóricos. Por medio de observaciones, en la década de 1910, el astrónomo estadounidense Vesto Slipher y, después de él, Carl Wilhelm Wirtz, de Estrasburgo, determinaron que la mayor parte de las nebulosas espirales se alejan de la Tierra; pero no llegaron a darse cuenta de las implicaciones cosmológicas de esta observación, ni tampoco del hecho de que las supuestas nebulosas eran en realidad galaxias exteriores a nuestra Vía Láctea.

Además, la teoría de Albert Einstein sobre la relatividad general (segunda década del siglo XX) no admite soluciones estáticas (es decir, el Universo debe estar en expansión o en contracción), resultado que él mismo consideró equivocado, y trató de corregirlo agregando la constante cosmológica. El primero en aplicar formalmente la relatividad a la cosmología, sin considerar la constante cosmológica, fue Alexander Friedman, cuyas ecuaciones describen el Universo Friedman-Lemaître-Robertson-Walker, que puede expandirse o contraerse.

Entre 1927 y 1930, el padre jesuita belga Georges Lemaître obtuvo independientemente las ecuaciones Friedman-Lemaître-Robertson-Walker y propuso, sobre la base de la recesión de las nebulosas espirales, que el Universo se inició con la explosión de un átomo primigenio, lo que más tarde se denominó "Big Bang".

En 1929, Edwin Hubble realizó observaciones que sirvieron de fundamento para comprobar la teoría de Lemaître. Hubble probó que las nebulosas espirales son galaxias y midió sus distancias observando las estrellas variables cefeidas en galaxias distantes. Descubrió que las galaxias se alejan unas de otras a velocidades (relativas a la Tierra) directamente proporcionales a su distancia. Este hecho se conoce ahora como la ley de Hubble (véase Edwin Hubble: Marinero de las nebulosas, texto escrito por Edward Christianson).

Según el principio cosmológico, el alejamiento de las galaxias sugería que el Universo está en expansión. Esta idea originó dos hipótesis opuestas. La primera era la teoría Big Bang de Lemaître, apoyada y desarrollada por George Gamow. La segunda posibilidad era el modelo de la teoría del estado estacionario de Fred Hoyle, según la cual se genera nueva materia mientras las galaxias se alejan entre sí. En este modelo, el Universo es básicamente el mismo en un momento dado en el tiempo. Durante muchos años hubo un número de adeptos similar para cada teoría.

Con el pasar de los años, las evidencias observacionales apoyaron la idea de que el Universo evolucionó a partir de un estado denso y caliente. Desde el descubrimiento de la radiación de fondo de microondas, en 1965, ésta ha sido considerada la mejor teoría para explicar el origen y evolución del cosmos. Antes de finales de los años sesenta, muchos cosmólogos pensaban que la singularidad infinitamente densa del tiempo inicial en el modelo cosmológico de Friedman era una sobreidealización, y que el Universo se contraería antes de empezar a expandirse nuevamente. Ésta es la teoría de Richard Tolman de un Universo oscilante. En los años 1960, Stephen Hawking y otros demostraron que esta idea no era factible, y que la singularidad es un componente esencial de la gravedad de Einstein. Esto llevó a la mayoría de los cosmólogos a aceptar la teoría del Big Bang, según la cual el Universo que observamos se inició hace un tiempo finito.

Prácticamente todos los trabajos teóricos actuales en cosmología tratan de ampliar o concretar aspectos de la teoría del Big Bang. Gran parte del trabajo actual en cosmología trata de entender cómo se formaron las galaxias en el contexto del Big Bang, comprender lo que allí ocurrió y cotejar nuevas observaciones con la teoría fundamental.

A finales de los años 1990 y principios del siglo XXI, se lograron grandes avances en la cosmología del Big Bang como resultado de importantes adelantos en telescopía, en combinación con grandes cantidades de datos satelitales de COBE, el telescopio espacial Hubble y WMAP. Estos datos han permitido a los cosmólogos calcular muchos de los parámetros del Big Bang hasta un nuevo nivel de precisión, y han conducido al descubrimiento inesperado de que el Universo está en aceleración.

Base teórica
En su forma actual, la teoría del Big Bang depende de tres suposiciones:

1.La universalidad de las leyes de la física, en particular de la teoría de la relatividad general
2.El principio cosmológico
3.El principio de Copérnico
Inicialmente, estas tres ideas fueron tomadas como postulados, pero actualmente se intenta verificar cada una de ellas. La universalidad de las leyes de la física ha sido verificada al nivel de las más grandes constantes físicas, llevando su margen de error hasta el orden de 10-5. La isotropía del universo que define el principio cosmológico ha sido verificada hasta un orden de 10-5. Actualmente se intenta verificar el principio de Copérnico observando la interacción entre grupos de galaxias y el CMB por medio del efecto Sunyaev-Zeldovich con un nivel de exactitud del 1 por ciento.

La teoría del Big Bang utiliza el postulado de Weyl para medir sin ambigüedad el tiempo en cualquier momento en el pasado a partir del la época de Planck. Las medidas en este sistema dependen de coordenadas conformales, en las cuales las llamadas distancias codesplazantes y los tiempos conformales permiten no considerar la expansión del universo para las medidas de espacio-tiempo. En ese sistema de coordenadas, los objetos que se mueven con el flujo cosmológico mantienen siempre la misma distancia codesplazante, y el horizonte o límite del universo se fija por el tiempo codesplazante.

Visto así, el Big Bang no es una explosión de materia que se aleja para llenar un universo vacío; es el espacio-tiempo el que se extiende.Y es su expansión la que causa el incremento de la distancia física entre dos puntos fijos en nuestro universo.Cuando los objetos están ligados entre ellos (por ejemplo, por una galaxia), no se alejan con la expansión del espacio-tiempo, debido a que se asume que las leyes de la física que los gobiernan son uniformes e independientes del espacio métrico. Más aún, la expansión del universo en las escalas actuales locales es tan pequeña que cualquier dependencia de las leyes de la física en la expansión no sería medible con las técnicas actuales.

Expansión expresada en la ley de Hubble

De la observación de galaxias y quasares lejanos se desprende la idea de que estos objetos experimentan un corrimiento hacia el rojo, lo que quiere decir que la luz que emiten se ha desplazado proporcionalmente hacia longitudes de onda más largas. Esto se comprueba tomando el espectro de los objetos y comparando, después, el patrón espectroscópico de las líneas de emisión o absorción correspondientes a átomos de los elementos que interactúan con la radiación. En este análisis se puede apreciar cierto corrimiento hacia el rojo, lo que se explica por una velocidad recesional correspondiente al efecto Doppler en la radiación. Al representar estas velocidades recesionales frente a las distancias respecto a los objetos, se observa que guardan una relación lineal, conocida como Ley de Hubble:



donde v es la velocidad recesional, D es la distancia al objeto y H0 es la constante de Hubble, que el satélite WMAP estimó en 71 ± 4 km/s/Mpc.

No hay comentarios:

Publicar un comentario